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Here, I summarize the proof for Hölder’s inequality, Minkowski’s inequality and
monotonicity of Lp norms in finite positive measure spaces. The main reference is
Stein’s Functional Analysis [1] Chapter 1.

1 Hölder’s inequality

Theorem 1.1. Suppose 0 < p < ∞ and 1 < q < ∞ are conjugate exponents. If
f ∈ Lp and g ∈ Lq, then fg ∈ L1 and

||fg||L1 ≤ ||f ||Lp ||g||Lq . (1.1)

Proof. The idea is the following:

• Use generalized AM-GM Inequality.

• Normalized f , g and apply AM-GM ≤.

Recall that Arithmetic-Geometric mean inequality (4.1): if A,B ≥ 0 and 0 ≤ θ < 1,
then

AθB1−θ ≤ θA+ (1− θ)B. (1.2)

WLOG, assume neither f nor g vanish. By replacing f by f
||f ||Lp

and g by g
||g||Lq

, we

may also assume
||f ||Lp = ||g||Lq = 1.

Suffices to show
||fg||L1 ≤ 1.

Set A = |f |p , B = |g|q , θ = 1
p
, then apply AM-GM ≤, we have,

|fg| ≤ 1

p
|f |p +

1

q
|g|q
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Integrating both sides,

||fg||L1 ≤ 1

p
||f ||p +

1

q
||g||q =

1

p
+

1

q
= 1.

Moreover, by the equality condition in AM-GM ≤, we know, Hölder ≤ (1.2) with
equality holds if

|f(x|)p

||f(x)||pp
=
|g(x)|q

||g(x)||qq
.

Remark 1.2. Another approach is to use Young’s inequality: for nonnegative a, b,

ab ≤ ap

p
+
bq

q
, where p, q are conjugate exponents.

Above inequality with equality holds iff ap = bq. Proof is done by first normalizing
f, g, setting a = |f | , b = |g| and integrating.

2 Minkowski’s inequality

Motivation: It gives us the triangle inequality in Lp space, where p ≥ 1. However,
when 0 < p < 1, we have a quasi-triangle inequality: ||f+g||Lp ≤ Cp(||f ||Lp + ||g||Lp).
See [2].

Theorem 2.1. If 1 ≤ p <∞, and f, g ∈ Lp, then f + g ∈ Lp and

||f + g||Lp ≤ ||f ||Lp + ||g||Lp (2.1)

Proof. The idea is the following:

• Use Cr-inequality to show Lp space is closed under addition.

• Write |f + g|p = |f + g| |f + g|p−1, then integrating and applying Hölder.

When p = 1, (2.1) is obtained by integrating

|f + g| ≤ |f |+ |g| .

When 1 < p <∞, use Cr inequality (4.3),

|f + g|p ≤ 2r−1(|f |p + |g|p),
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which implies f + g ∈ Lp. Now, since (p− 1)q = p,∫
|f + g|p dµ ≤

∫
|f + g|p−1 |f + g| dµ

≤
∫
|f | |f + g|p−1 dµ+

∫
|g| |f + g|p−1 dµ

≤

[(∫
|f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p
](∫

|f + g|(p−1)q dµ

) 1
(p−1)q

(by Hölder)

=
(
||f ||Lp + ||g||Lp

)(∫
|f + g|p dµ

)1− 1
p

=
(
||f ||Lp + ||g||Lp

) ||f + g||pp
||f + g||Lp

Re-ranging the terms, proof is complete.

Remark 2.2. Minkowski’s ≤ with equality for 1 < p <∞ if and only if f = λg, for
some λ ≥ 0 or g = 0. That is, f and g are positively linearly dependent. Another
proof is to introduce a convex function, see STOR635 HW2 Q2.

3 Monotonicity for Lp Norms

Theorem 3.1. If Ω has finite positive measure, and p0 ≤ p1, then Lp1 ⊂ Lp0,
and

1

µ(Ω)1/p0
||f ||p0 ≤

1

µ(Ω)1/p1
||f ||p1 (3.1)

Proof. The idea is:

• Write |f |p0 = |f |p0 · 1, then apply Hölder.

WOLG, assume µ(Ω) = 1. Check: ||f ||p0 ≤ ||f ||p1 . Since p1
p0
≥ 1,

||f ||p0p0 =

∫
(|f |p0 · 1) dµ ≤

(∫
|f |p0·

p1
p0 dµ

) p0
p1

=
(
||f ||p1p1

) p0
p1 = ||f ||p0p1 ,

which completes the proof.

Remark 3.2. The assumption “finite positive measure space” is necessary.
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Theorem 3.3. Suppose f ∈ L∞ is supported on a set of finite measure. Then f ∈ Lp
for all p <∞, and

||f ||Lp −→ ||f ||L∞ , as p −→∞. (3.2)

Proof. Let E be a measurable set of Ω with µ(E) < ∞ so that f vanishes on Ec. If
µ(E) = 0, statement holds trivially. Otherwise,

||f ||Lp =

(∫
E

|f |pdµ
)1/p

≤
(∫

E

||f ||p∞dµ
)1/p

= ||f ||∞µ(E)1/p,

which implies
lim sup
p→∞

||f ||Lp ≤ ||f ||∞.

On the other hand, given ε > 0,

µ(A) := µ{x : f(x) > ||f ||∞ − ε} > δ, for some δ > 0.

Hence, ∫
Ω

|f |pdµ ≥
∫

Ω

|f |p1Adµ ≥ (||f ||∞ − ε)p δ,

which implies
lim inf
p→∞

||f ||Lp ≥ ||f ||∞ − ε,

Letting ε ↓ 0, the proof is complete.
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4 Appendix

Theorem 4.1 (Generalized AM-GM Inequality). If A,B ≥ 0 and 0 ≤ θ < 1,
then

AθB1−θ ≤ θA+ (1− θ)B.

Proof. If B = 0, the inequality holds trivially. Assume B 6= 0, and replace A by AB.
Then suffices to show

Aθ ≤ θA+ (1− θ) (4.1)

Define f(x) = xθ − θx− 1 + θ. Clearly, f attains a maximum at x = 1 and f(1) = 0.
Hence f(A) ≤ 0, which implies (4.1) holds.

Remark 4.2. AM-GM Inequality (4.1) with equality holds when A = B.

Theorem 4.3 (Cr-Inequality). E|X + Y |r ≤ Cr(E|X|r + E|Y |r), where

Cr =

{
1, if 0 < r ≤ 1

2r−1, if r ≥ 1

Proof. If r ≥ 1, then x→ |x|r is convex. Then

|1
2

(X + Y )|r ≤ 1

2
|X|r +

1

2
|Y |r

Taking expectation, proof is done.

If 0 < r < 1, then z1/r ≤ z, ∀ 0 < z < 1. Then(
|X|r

|X|r + |Y |r

)1/r

+

(
|Y |r

|X|r + |Y |r

)1/r

≤
(

|X|r

|X|r + |Y |r

)
+

(
|Y |r

|X|r + |Y |r

)
= 1

After re-ranging, we get |X + Y |r ≤ |X|r + |Y |r. Taking expectation, we done.
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