Inequalities Related to L^p Norm

Chen Xing

May 11, 2017

Here, I summarize the proof for Hölder's inequality, Minkowski's inequality and monotonicity of L^p norms in finite positive measure spaces. The main reference is Stein's Functional Analysis [1] Chapter 1.

1 Hölder's inequality

Theorem 1.1. Suppose $0 and <math>1 < q < \infty$ are conjugate exponents. If $f \in L^p$ and $g \in L^q$, then $fg \in L^1$ and

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}. \tag{1.1}$$

Proof. The idea is the following:

- Use generalized AM-GM Inequality.
- Normalized f, g and apply AM-GM \leq .

Recall that Arithmetic-Geometric mean inequality (4.1): if $A, B \ge 0$ and $0 \le \theta < 1$, then

$$A^{\theta}B^{1-\theta} \le \theta A + (1-\theta)B. \tag{1.2}$$

WLOG, assume neither f nor g vanish. By replacing f by $\frac{f}{||f||_{L^p}}$ and g by $\frac{g}{||g||_{L^q}}$, we may also assume

$$||f||_{L^p} = ||g||_{L^q} = 1$$

Suffices to show

$$||fg||_{L^1} \le 1$$

Set $A = |f|^p$, $B = |g|^q$, $\theta = \frac{1}{p}$, then apply AM-GM \leq , we have,

$$|fg| \le \frac{1}{p} |f|^p + \frac{1}{q} |g|^q$$

Integrating both sides,

$$||fg||_{L^1} \le \frac{1}{p}||f||^p + \frac{1}{q}||g||^q = \frac{1}{p} + \frac{1}{q} = 1.$$

Moreover, by the equality condition in AM-GM \leq , we know, Hölder \leq (1.2) with equality holds if

$$\frac{|f(x)|^p}{||f(x)||^p_p} = \frac{|g(x)|^q}{||g(x)||^q_q}.$$

Remark 1.2. Another approach is to use Young's inequality: for nonnegative a, b,

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$
, where p, q are conjugate exponents.

Above inequality with equality holds iff $a^p = b^q$. Proof is done by first normalizing f, g, setting a = |f|, b = |g| and integrating.

2 Minkowski's inequality

Motivation: It gives us the **triangle inequality** in L^p space, where $p \ge 1$. However, when $0 , we have a quasi-triangle inequality: <math>||f+g||_{L^p} \le C_p(||f||_{L^p}+||g||_{L^p})$. See [2].

Theorem 2.1. If $1 \le p < \infty$, and $f, g \in L^p$, then $f + g \in L^p$ and

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$
(2.1)

Proof. The idea is the following:

- Use Cr-inequality to show L^p space is closed under addition.
- Write $|f + g|^p = |f + g| |f + g|^{p-1}$, then integrating and applying Hölder.

When p = 1, (2.1) is obtained by integrating

$$|f+g| \le |f| + |g|$$

When 1 , use Cr inequality (4.3),

$$|f + g|^p \le 2^{r-1}(|f|^p + |g|^p),$$

which implies $f + g \in L^p$. Now, since (p - 1)q = p,

$$\begin{split} \int |f+g|^{p} d\mu &\leq \int |f+g|^{p-1} |f+g| d\mu \\ &\leq \int |f| |f+g|^{p-1} d\mu + \int |g| |f+g|^{p-1} d\mu \\ &\leq \left[\left(\int |f|^{p} d\mu \right)^{1/p} + \left(\int |g|^{p} d\mu \right)^{1/p} \right] \left(\int |f+g|^{(p-1)q} d\mu \right)^{\frac{1}{(p-1)q}} \quad \text{(by Hölder)} \\ &= \left(||f||_{L^{p}} + ||g||_{L^{p}} \right) \left(\int |f+g|^{p} d\mu \right)^{1-\frac{1}{p}} \\ &= \left(||f||_{L^{p}} + ||g||_{L^{p}} \right) \frac{||f+g||_{p}^{p}}{||f+g||_{L^{p}}} \end{split}$$

Re-ranging the terms, proof is complete.

Remark 2.2. Minkowski's \leq with equality for $1 if and only if <math>f = \lambda g$, for some $\lambda \geq 0$ or g = 0. That is, f and g are positively linearly dependent. Another proof is to introduce a convex function, see STOR635 HW2 Q2.

3 Monotonicity for L^p Norms

Theorem 3.1. If Ω has finite positive measure, and $p_0 \leq p_1$, then $L^{p_1} \subset L^{p_0}$, and

$$\frac{1}{\mu(\Omega)^{1/p_0}}||f||_{p_0} \le \frac{1}{\mu(\Omega)^{1/p_1}}||f||_{p_1}$$
(3.1)

Proof. The idea is:

• Write $|f|^{p_0} = |f|^{p_0} \cdot 1$, then apply Hölder.

WOLG, assume $\mu(\Omega) = 1$. Check: $||f||_{p_0} \le ||f||_{p_1}$. Since $\frac{p_1}{p_0} \ge 1$,

$$\begin{split} ||f||_{p_0}^{p_0} &= \int \left(|f|^{p_0} \cdot 1 \right) d\mu \le \left(\int |f|^{p_0 \cdot \frac{p_1}{p_0}} d\mu \right)^{\frac{p_0}{p_1}} \\ &= \left(||f||_{p_1}^{p_1} \right)^{\frac{p_0}{p_1}} = ||f||_{p_1}^{p_0}, \end{split}$$

which completes the proof.

Remark 3.2. The assumption "finite positive measure space" is necessary.

Theorem 3.3. Suppose $f \in L^{\infty}$ is supported on a set of finite measure. Then $f \in L^{p}$ for all $p < \infty$, and

$$||f||_{L^p} \longrightarrow ||f||_{L^{\infty}}, \quad as \ p \longrightarrow \infty.$$
 (3.2)

Proof. Let E be a measurable set of Ω with $\mu(E) < \infty$ so that f vanishes on E^c . If $\mu(E) = 0$, statement holds trivially. Otherwise,

$$||f||_{L^p} = \left(\int_E |f|^p d\mu\right)^{1/p} \le \left(\int_E ||f||_{\infty}^p d\mu\right)^{1/p} = ||f||_{\infty} \mu(E)^{1/p},$$

which implies

$$\limsup_{p \to \infty} ||f||_{L^p} \le ||f||_{\infty}.$$

On the other hand, given $\epsilon > 0$,

$$\mu(A) := \mu\{x : f(x) > ||f||_{\infty} - \epsilon\} > \delta, \quad \text{for some } \delta > 0.$$

Hence,

$$\int_{\Omega} |f|^p d\mu \ge \int_{\Omega} |f|^p \mathbf{1}_A d\mu \ge (||f||_{\infty} - \epsilon)^p \,\delta,$$

which implies

$$\liminf_{p \to \infty} ||f||_{L^p} \ge ||f||_{\infty} - \epsilon,$$

Letting $\epsilon \downarrow 0$, the proof is complete.

4 Appendix

Theorem 4.1 (Generalized AM-GM Inequality). If $A, B \ge 0$ and $0 \le \theta < 1$, then

$$A^{\theta}B^{1-\theta} \le \theta A + (1-\theta)B.$$

Proof. If B = 0, the inequality holds trivially. Assume $B \neq 0$, and replace A by AB. Then suffices to show

$$A^{\theta} \le \theta A + (1 - \theta) \tag{4.1}$$

Define $f(x) = x^{\theta} - \theta x - 1 + \theta$. Clearly, f attains a maximum at x = 1 and f(1) = 0. Hence $f(A) \leq 0$, which implies (4.1) holds.

Remark 4.2. AM-GM Inequality (4.1) with equality holds when A = B.

Theorem 4.3 (Cr-Inequality). $\mathbf{E}|X+Y|^r \leq C_r(\mathbf{E}|X|^r + \mathbf{E}|Y|^r)$, where

$$C_r = \begin{cases} 1, & \text{if } 0 < r \le 1\\ 2^{r-1}, & \text{if } r \ge 1 \end{cases}$$

Proof. If $r \ge 1$, then $x \to |x|^r$ is convex. Then

$$\left|\frac{1}{2}(X+Y)\right|^{r} \le \frac{1}{2}\left|X\right|^{r} + \frac{1}{2}\left|Y\right|^{r}$$

Taking expectation, proof is done.

If
$$0 < r < 1$$
, then $z^{1/r} \le z, \forall 0 < z < 1$. Then

$$\left(\frac{|X|^r}{|X|^r + |Y|^r}\right)^{1/r} + \left(\frac{|Y|^r}{|X|^r + |Y|^r}\right)^{1/r} \le \left(\frac{|X|^r}{|X|^r + |Y|^r}\right) + \left(\frac{|Y|^r}{|X|^r + |Y|^r}\right) = 1$$

After re-ranging, we get $|X + Y|^r \le |X|^r + |Y|^r$. Taking expectation, we done. \Box

References

- [1] Elias M. Stein and Rami Shakarchi, *Functional analysis: Introduction to further topics in analysis*, Princeton University Press, Sep 2011.
- [2] Terence Tao, An epsilon of room, ii: Pages from year three of a mathematical blog, 2010.