Inequalities Related to L^p Norm

Chen Xing

May 11, 2017

Here, I summarize the proof for Hölder's inequality, Minkowski's inequality and monotonicity of L^p norms in finite positive measure spaces. The main reference is Stein's Functional Analysis [\[1\]](#page-4-0) Chapter 1.

1 Hölder's inequality

Theorem 1.1. Suppose $0 < p < \infty$ and $1 < q < \infty$ are conjugate exponents. If $f \in L^p$ and $g \in L^q$, then $fg \in L^1$ and

$$
||fg||_{L^{1}} \le ||f||_{L^{p}}||g||_{L^{q}}.
$$
\n(1.1)

Proof. The idea is the following:

- Use generalized AM-GM Inequality.
- Normalized f, g and apply AM-GM \leq .

Recall that Arithmetic-Geometric mean inequality [\(4.1\)](#page-4-1): if $A, B \ge 0$ and $0 \le \theta < 1$, then

$$
A^{\theta}B^{1-\theta} \le \theta A + (1 - \theta)B. \tag{1.2}
$$

WLOG, assume neither f nor g vanish. By replacing f by $\frac{f}{\|f\|_{L^p}}$ and g by $\frac{g}{\|g\|_{L^q}}$, we may also assume

$$
||f||_{L^p} = ||g||_{L^q} = 1.
$$

Suffices to show

$$
||fg||_{L^1}\leq 1.
$$

Set $A = |f|^p$, $B = |g|^q$, $\theta = \frac{1}{n}$ $\frac{1}{p}$, then apply AM-GM \leq , we have,

$$
|fg| \le \frac{1}{p} |f|^p + \frac{1}{q} |g|^q
$$

Integrating both sides,

$$
||fg||_{L^{1}} \leq \frac{1}{p}||f||^{p} + \frac{1}{q}||g||^{q} = \frac{1}{p} + \frac{1}{q} = 1.
$$

Moreover, by the equality condition in AM-GM \leq , we know, Hölder \leq [\(1.2\)](#page-0-0) with equality holds if

$$
\frac{|f(x)|^p}{||f(x)||_p^p} = \frac{|g(x)|^q}{||g(x)||_q^q}.
$$

Remark 1.2. Another approach is to use Young's inequality: for nonnegative a, b,

$$
ab \le \frac{a^p}{p} + \frac{b^q}{q}, \quad where \ p, q \ are \ conjugate \ exponents.
$$

Above inequality with equality holds iff $a^p = b^q$. Proof is done by first normalizing f, g , setting $a = |f|$, $b = |g|$ and integrating.

2 Minkowski's inequality

Motivation: It gives us the **triangle inequality** in L^p space, where $p \geq 1$. However, when $0 < p < 1$, we have a quasi-triangle inequality: $||f+g||_{L^p} \leq C_p(||f||_{L^p} + ||g||_{L^p})$. See [\[2\]](#page-4-2).

Theorem 2.1. If $1 \leq p < \infty$, and $f, g \in L^p$, then $f + g \in L^p$ and

$$
||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}
$$
\n(2.1)

Proof. The idea is the following:

- Use Cr-inequality to show L^p space is closed under addition.
- Write $|f + g|^p = |f + g||f + g|^{p-1}$, then integrating and applying Hölder.

When $p = 1$, [\(2.1\)](#page-1-0) is obtained by integrating

$$
|f+g| \le |f| + |g|.
$$

When $1 < p < \infty$, use Cr inequality [\(4.3\)](#page-4-3),

$$
|f + g|^p \le 2^{r-1} (|f|^p + |g|^p),
$$

which implies $f + g \in L^p$. Now, since $(p-1)q = p$,

$$
\int |f+g|^p d\mu \le \int |f+g|^{p-1} |f+g| d\mu
$$
\n
$$
\le \int |f| |f+g|^{p-1} d\mu + \int |g| |f+g|^{p-1} d\mu
$$
\n
$$
\le \left[\left(\int |f|^p d\mu \right)^{1/p} + \left(\int |g|^p d\mu \right)^{1/p} \right] \left(\int |f+g|^{(p-1)q} d\mu \right)^{\frac{1}{(p-1)q}} \text{ (by Hölder)}
$$
\n
$$
= \left(||f||_{L^p} + ||g||_{L^p} \right) \left(\int |f+g|^p d\mu \right)^{1-\frac{1}{p}}
$$
\n
$$
= \left(||f||_{L^p} + ||g||_{L^p} \right) \frac{||f+g||_p^p}{||f+g||_{L^p}}
$$

Re-ranging the terms, proof is complete.

 \Box

 \Box

Remark 2.2. Minkowski's \leq with equality for $1 < p < \infty$ if and only if $f = \lambda q$, for some $\lambda \geq 0$ or $g = 0$. That is, f and g are positively linearly dependent. Another proof is to introduce a convex function, see STOR635 HW2 Q2.

3 Monotonicity for L^p Norms

Theorem 3.1. If Ω has **finite positive measure**, and $p_0 \leq p_1$, then $L^{p_1} \subset L^{p_0}$, and

$$
\frac{1}{\mu(\Omega)^{1/p_0}}||f||_{p_0} \le \frac{1}{\mu(\Omega)^{1/p_1}}||f||_{p_1}
$$
\n(3.1)

Proof. The idea is:

• Write $|f|^{p_0} = |f|^{p_0} \cdot 1$, then apply Hölder.

WOLG, assume $\mu(\Omega) = 1$. Check: $||f||_{p_0} \le ||f||_{p_1}$. Since $\frac{p_1}{p_0} \ge 1$,

$$
||f||_{p_0}^{p_0} = \int (|f|^{p_0} \cdot 1) d\mu \le \left(\int |f|^{p_0 \cdot \frac{p_1}{p_0}} d\mu\right)^{\frac{p_0}{p_1}}
$$

=
$$
(||f||_{p_1}^{p_1})^{\frac{p_0}{p_1}} = ||f||_{p_1}^{p_0},
$$

which completes the proof.

Remark 3.2. The assumption "finite positive measure space" is necessary.

Theorem 3.3. Suppose $f \in L^{\infty}$ is supported on a set of finite measure. Then $f \in L^p$ for all $p < \infty$, and

$$
||f||_{L^p} \longrightarrow ||f||_{L^{\infty}}, \quad \text{as } p \longrightarrow \infty.
$$
 (3.2)

Proof. Let E be a measurable set of Ω with $\mu(E) < \infty$ so that f vanishes on E^c. If $\mu(E) = 0$, statement holds trivially. Otherwise,

$$
||f||_{L^{p}} = \left(\int_{E} |f|^{p} d\mu\right)^{1/p} \le \left(\int_{E} ||f||^{p}_{\infty} d\mu\right)^{1/p} = ||f||_{\infty} \mu(E)^{1/p},
$$

which implies

$$
\limsup_{p\to\infty}||f||_{L^p}\leq||f||_{\infty}.
$$

On the other hand, given $\epsilon > 0$,

$$
\mu(A) := \mu\{x : f(x) > ||f||_{\infty} - \epsilon\} > \delta, \quad \text{for some } \delta > 0.
$$

Hence,

$$
\int_{\Omega} |f|^p d\mu \ge \int_{\Omega} |f|^p \mathbf{1}_A d\mu \ge (||f||_{\infty} - \epsilon)^p \delta,
$$

which implies

$$
\liminf_{p \to \infty} ||f||_{L^p} \ge ||f||_{\infty} - \epsilon,
$$

Letting $\epsilon \downarrow 0$, the proof is complete.

4 Appendix

Theorem 4.1 (Generalized AM-GM Inequality). If $A, B \ge 0$ and $0 \le \theta < 1$, then

$$
A^{\theta}B^{1-\theta} \le \theta A + (1 - \theta)B.
$$

Proof. If $B = 0$, the inequality holds trivially. Assume $B \neq 0$, and replace A by AB. Then suffices to show

$$
A^{\theta} \le \theta A + (1 - \theta) \tag{4.1}
$$

Define $f(x) = x^{\theta} - \theta x - 1 + \theta$. Clearly, f attains a maximum at $x = 1$ and $f(1) = 0$. Hence $f(A) \leq 0$, which implies [\(4.1\)](#page-4-4) holds. \Box

Remark 4.2. AM-GM Inequality [\(4.1\)](#page-4-1) with equality holds when $A = B$.

Theorem 4.3 (Cr-Inequality). $\mathbf{E}|X + Y|^r \leq C_r(\mathbf{E}|X|^r + \mathbf{E}|Y|^r)$, where

$$
C_r = \begin{cases} 1, & \text{if } 0 < r \le 1 \\ 2^{r-1}, & \text{if } r \ge 1 \end{cases}
$$

Proof. If $r \geq 1$, then $x \to |x|^r$ is convex. Then

$$
|\frac{1}{2}(X+Y)|^r \le \frac{1}{2}|X|^r + \frac{1}{2}|Y|^r
$$

Taking expectation, proof is done.

If
$$
0 < r < 1
$$
, then $z^{1/r} \leq z$, \forall $0 < z < 1$. Then

$$
\left(\frac{|X|^r}{|X|^r+|Y|^r}\right)^{1/r} + \left(\frac{|Y|^r}{|X|^r+|Y|^r}\right)^{1/r} \le \left(\frac{|X|^r}{|X|^r+|Y|^r}\right) + \left(\frac{|Y|^r}{|X|^r+|Y|^r}\right) = 1
$$

After re-ranging, we get $|X + Y|^r \leq |X|^r + |Y|^r$. Taking expectation, we done. \Box

References

- [1] Elias M. Stein and Rami Shakarchi, Functional analysis: Introduction to further topics in analysis, Princeton University Press, Sep 2011.
- [2] Terence Tao, An epsilon of room, ii: Pages from year three of a mathematical blog, 2010.